Research: “Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3”

In this study by researchers at the Massachusetts Institute of Technology, researchers aimed to explore the use of a micro-electrode array (MEA) as an assay to help identify the electrical network phenotypes associated with risk genes for autism spectrum disorder (ASD). Researchers characterized local and global network firing in cortical neurons and developed methods to analyze alternations between network active periods (NAP) and network inactive periods (NIP). The Shank3 knockout mouse is an established animal model of ASD. Researchers examined cortical neurons in Shank3 knockout mice and evaluated the electric characteristics of neuronal networks. Results indicated that Shank3 deletion leads to a decrease in neuronal firing activity. Furthermore, researchers identified that decrease in firing activity caused by Shank 3 deletion can be normalized by enhancing excitatory synaptic transmission with an AMPA receptor-positive modulator. Additionally, Shank 3 knockout mice networks produced a shorter NIP during slow network oscillation. This can effectively be normalized through the use of clonazepam. In conclusion, MEA recordings can be used as a means to assess network patterns affected by genes that are associated with ASD.

This entry was posted in News. Bookmark the permalink.